

Roll No.

--	--	--	--	--	--	--	--	--	--	--	--

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E / B. Tech (Full Time) END SEMESTER EXAMINATIONS – APRIL / MAY 2025

MECHANICAL ENGINEERING

ME371 Gas Dynamics and Jet Propulsion

(Regulation 2004)

Time: 3 Hours

Answer ALL Questions

Max. Marks 100

PART- A (10 x 2 = 20 Marks)

Q.No	Questions	Marks
1.	Define stagnation temperature.	2
2.	Distinguish between normal and oblique shock waves.	2
3.	Write down the governing equations for a Rayleigh flow.	2
4.	State the assumptions used in Fanno flow.	2
5.	Define an expansive wave.	2
6.	Define Mach number and classify sub-sonic, sonic, and super-sonic flows.	2
7.	What is bypass ratio in a turbofan engine?	2
8.	Which engine has the highest propulsive efficiency?	2
9.	Why a rocket can reach the moon, whereas an aircraft cannot reach the moon?	2
10.	Define specific impulse.	2

PART- B (5 x 16 = 80 Marks)

(Q. No 11 is Compulsory)

Q.No	Questions	Marks
11.	a) Explain the different types of aircraft engines with a neat schematic. Also list their merits and demerits.	16
12.	a) Sketch the flow through a CD nozzle for various back pressure values. Also explain the reasons for the flow pattern variation. Sketch the geometry for a sub-sonic nozzle and diffuser.	16
OR		
b) i) Derive the Area- Mach No. relation and sketch the various geometry for accelerating and decelerating subsonic and supersonic flows.		8
ii) A nozzle in a wind tunnel gives a test-section Mach number of 2. Air enters the nozzle from a large reservoir at 0.69 bar, 310 K. The cross-sectional area of the throat is 1000 cm². Determine the pressure, temperature and velocity at nozzle throat and test sections, mass flow rate of air and area of cross section at test section.		8

13.	a) A combustion chamber in a gas turbine plant receives air at 350 K, 0.55 bar and 75 m/s. The air-fuel ratio is 29 and the calorific value of the fuel is 41.87 MJ/kg. Taking $\gamma=1.4$ and $R= 0.287 \text{ kJ/kg.K}$ for the gas, determine: i) Mach nos. at inlet and exit ii) pressure, temperature and velocity of gas at exit iii) maximum stagnation temperature attainable and iv) percentage stagnation pressure loss in the combustion chamber.	16
	OR	
14.	b) A fuel-air mixture, approximated as air with $\gamma=1.4$, enters a duct combustion chamber at $V_1 = 60 \text{ m/s}$, $P_1 = 150 \text{ kPa}$, and $T_1 = 300 \text{ K}$. The heat addition by combustion is 870 kJ/kg of mixture. Compute (a) the exit properties V_2 , P_2 , and T_2 and (b) the total heat addition which would have caused a sonic exit flow.	16
	OR	
15.	a) A CD nozzle operates at off-design condition while conducting air from a high pressure tank from a large container. A normal shock occurs in the divergent part of the nozzle at a section where cross-sectional area is 24 cm^2 . If the stagnation pressure and temperature at the inlet of the nozzle are 2.1 bar and 36°C respectively, and the throat area is 12 cm^2 and the exit area is 36 cm^2 estimate the exit Mach number and exit pressure.	16
	b) Calculate the air flow rate through the engine, exit nozzle cross-section area, thrust power, thrust, propulsive and overall efficiencies for a turbojet engine from the following data: Flight Mach number = 0.85 ; flight altitude = 12 km ; cross-sectional area of the inlet-diffuser at entry = 0.5 m^2 ; air-fuel ratio = 60 ; calorific value of the fuel = 43 MJ/kg ; exhaust jet velocity = 660 m/s ; exhaust jet temperature = 727°C ;exhaust jet pressure = 0.47 atm.	
15.	a) Describe the various types of propellants used in a rocket motor. Also mention their advantages and disadvantages.	16
	OR	
	b) (i) Define the terms – escape velocity, overall efficiency of rocket and propellant mass fraction.	6
	(ii) Determine the maximum velocity of a rocket and the altitude attained from The following data: Mass ratio = 0.15, Burn out time= 75 s, Effective jet velocity = 2500 m/s. Also find the velocity loss and altitude loss due to gravity. Ignore drag and assume vertical trajectory.	10

